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When the dynamics of holonomic mechanical systems are described in redundant coordinates with parameter-dependent 
constraints, some special features arise. At certain (critical) values of the parameters, the configuration manifold of the system 
may have, for example, self-intersections; in the neighbourhood of such a singular submanifold one cannot introduce Lagrangian 
coordinates of the system and it becomes difficult (even impossible) to define the orbits of the "critical" system correctly by taking 
limits with respect to the parameter. In such cases the classical Poincar6 theory of bifurcation of equilibria in conservative systems 
also needs some adjustment. As an example, a crank-gear mechanism is considered. © 2000 Elsevier Science Ltd. All rights 
reserved. 

A non-linear autonomous holonomic constraint 

f(x,y,l)=O (1) 

imposed on a collection of point masses, usually involves not only the coordinates x, y, but also a 
parameter l(x, y, f may also be vector quantities). The constraint defines in x, y space a subspace of 
admissible positions of the mechanical system--the configuration manifold S. Variation of the parameter 
l defines a family of mechanical systems and a corresponding collection S(l) of configuration manifolds. 

There are mechanical objects which have a critical parameter value l, such that S(I,) intersects itself 
at some singular point O of the x, y plane (or on some manifold P), while S(l) has no such self- 
intersections when 1 # h. The mechanical system corresponding to this value 1, will be called critical. 

The first special feature of a critical system is that one cannot introduce generalized Lagrangian 
coordinates on the manifold S(I,) (of course, in the neighbourhood of the point O one cannot even 
introduce local coordinates). 

Let us assume that the critical system is initially at rest at the point O. If this is not an equilibrium 
position, the question arises: along which branch of the manifold S(h) will the system subsequently move? 
There is no rational answer to this question. One either has to resign oneself to an obvious violation 
of the determinacy principle in this case or, conversely, to "save" the principle by adopting the 
"convection" that O is a singular equilibrium position of the system. Neither of these solutions gives 
rise to any trouble from a practical standpoint, since the event itself has a low probability. 

The question just asked has a natural continuation. The system "enters" the position O along a certain 
branch of the manifold S(I,) at some non-zero velocity. Which branch of the system will it "choose" 
for its subsequent motion? To seek an answer to this question, it seems natural to appeal to a fundamental 
law of mechanics--the law of inertia. In other words, the motion of the system will continue in such a 
way that the velocities of its points will vary continuously! This makes the choice of a branch for 
subsequent motion unambiguous, and in the case of a one-dimensional manifold implies O is a point 
of intersection for two orbits of the critical system. 

Now let us compare the orbits of the critical system with orbits of "nearby" systems, with 11 = l, - 
and 12 = l, + e. In accordance with the well-known ideas of bifurcation theory for the solutions of non- 
linear equations, as the parameter changes, the manifold S(l,) will "split" into disjoint parts $1, $2, in 
such a way that the pair S l ( l o  - E) ,  $2(/* - E) will not be "similar to" the pair Sl(l, + e), $2(l, + e). The 
configuration manifold is subject to a cardinal reorganization, which may rightly be termed 
"catastrophic", as the parameter l goes through the critical value I,. This situation has several corollaries. 
First, constraint (1) defines two configuration manifolds when I # l,. One of them corresponds to the 
given configuration of the mechanism being studied, while the other generally corresponds to another 
mechanism. The second system is referred to as the conjugate system. Second, S l ( l ,  - £) and SI(/* + E), 
considered as e ---> 0, form two limit sets which are not identical with one another and consist of pieces 
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of different orbits of the critical system. Consequently, the limit orbit of the mechanical system as l ---) 
l .  - 0(l, + 0) is not an orbit of the critical (limit) system. 

Now let us assume that the critical system is conservative and that its singular position O corresponds 
to a minimum of the potential energy relative to perturbations belonging to one orbit or another in 
S(I.). Consequently, O corresponds to a stable equilibrium of the critical system and its small motions 
about this equilibrium are small oscillations. However, the frequency of these oscillations will generally 
depend on the particular orbit along which the motion has been driven. In other words, a critical system 
may have two modes and two frequencies of small oscillations (but not their superposition!). This 
property should obviously be familiar to specialists in mechanical engineering. 

These singular properties of mechanical systems, which depend on a parameter, contribute certain 
s u p p l e m e n t s  to  t he  c lass ica l  P o i n c a r 6  t h e o r y  o f  t he  b i f u r c a t i o n  o f  e q u i l i b r i a  o f  c o n s e r v a t i v e  m e c h a n i c a l  
sys tems.  

Supplement 1. The maximum (or minimum) of a function H(x, y), which exists on the manifold Sx(l) 
for l < l, (or for l > l,) cannot be continued as a function of the parameter through a singular point O 
if it "coalesces" at that point with a minimum (or maximum, respectively) of H on  S2(I ). 

Supplement 2. Two maxima of a function Fi(x, y), one on the manifold Sl(l) and the other on $2(l), 
l < l , ,  wh ich  " c o a l e s c e "  a t  t he  p o i n t  O w h e r e  l = l . ,  a r e  c o n s e r v e d  o n  b o t h  m a n i f o l d s  w h e n  l > l,  as 
wel l .  T h e  s a m e  h o l d s  fo r  two  m i n i m a  on  d i f f e r e n t  man i fo ld s .  

Example. Consider  a crank PA ([PAl = r; see Fig. 1) which can rotate  bout  a fixed axis P, and a piston C which 
can perform reciprocat ing motion along a fixed straight line Px. The crank PA and piston C are coupled to a 
connecting rod AB (IABI = Z) by cylindrical hinges A, B. All the elements of the mechanism are assumed to be 
absolutely rigid bodies.  The  crank posit ion is defined by the angle ct between the segment  PA and the Px axis. The 
piston posit ion is defined by the coordinate  xn and the angle 13 between the lines AB and Px (Fig. 1). 

The system is of  course hoionomic,  since the quantit ies ct, 13 and xn satisfy the obvious geometr ical  relations 

x n = r c o s t z + X c o s 1 3 ,  l sin t~= sin13, l=r/x (2) 

Since xB is uniquely defined by the angles et and 13, and constraint (2) does not  involve xs, it is convenient  to 
picture the configuration manifold S of the system in the (t~, 13) plane or, to be precise, in the square ( - n  < ~t ~< 
re, - n  < 13 <~ n) (Fig. 2). If  0 < l < 1, the manifold $1 is qualitatively represented by the dash-dot  curve NKN'. If 
1 < l, the manifold $1 has the form of  the dashed curve MKM'. There  is a cardinal reorganizat ion of  the shape of 
the configuration manifold $1 as the parameter  l "passes through" the value l, = 1. 

Finally, in the "critical" case l.  = 1 the manifold S(I,) is the union of three segments: ~ = [3, ct + 13 = n, ct + 13 
= -n ,  the last two being continuat ions of one another,  since the system is 2n-periodic with respect  to both ct and 
13. 

The choice of a generalized Lagrangian coordinate q. It is obvious that when l < 1 one must take q = ct; but  for 
l > 1, on the contrary, q = 13. I t  is also obvious that  at l = 1 there is no generalized Lagrangian coordinate  (although 
the manifold S is still one-dimensional) .  

Trajectories of the "critical'system. At l = 1 the system has two singular positions: O: ct = 13 = re/2 and O': ct = 
13 = -n/2: the system may "leave" them by way of two totally different orbits t~ = 13 and ct + 13 = It or ct + I~ = - 
re. There  is an indeterminacy in the choice of  trajectory if the motion begins from a state of rest  at one of  these 
positions which is not  an equil ibrium position. 

Let  us assume now that  the motion begins from some non-singular position and that  the representat ive point  
"enters" the singular point, say, O, at non-zero velocity. If the motion takes place along the segment MO, the velocity 
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of the piston C throughout the motion is zero; but if the path is KO, the piston will move at non-zero velocity. 
Clearly, then, the continuation of the motion "through" the singular point O is determined by the inertia property, 
that is, in the first case it continues along ON, and in the second along OR. Thus, for almost all initial conditions, 
the segments R'R, M N  U M'N' must be regarded as whole trajectories of the critical system. 

Limit properties. We now consider the case I < 1 and single out the "limit orbit" as l ~ 1 - 0 (from the left). In 
view of the representation in Fig. 2, one can take the "limit" trajectory for the trajectory N'KN to be the polygonal 
line N'O'ON. But ifl ~ 1 + 0 (from the right), the "limit" trajectory will have the form of the polygonal line M'O'OM. 
Thus, the "limit trajectory" need not be a trajectory of the critical (i.e., limiting) system. This means that attempts 
to study the trajectories of critical (limiting, degenerate) systems by letting trajectories of the non-degenerate systems 
tend to their limits may not yield correct results. 
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Small oscillations of the "critical system". Let us assume that the mechanism is in a uniform gravitational field 
with acceleration g directed perpendicular to the line Ox (downwards in Fig. 1). It is obvious that in that case the 
singular point ct = 13 = n/2 is a stable equilibrium position of the mechanism. But the frequency of small oscillations 
about this equilibrium obviously depends on whether the piston remains in place or not. 

Assuming, for simplicity, that the rods are weightless, let us place at the hingeA a point mass m. Then the first 
frequency ~.l is the frequency of a mathematical pendulum of length r = X, and the second is given by 

~2 = rag I [ r ( m  + 4M)] 

where M is the mass of the piston. 

Bifurcation of equilibrium positions: In Fig. 3 we show the distribution of equilibrium positions for the mechanism 
in the ct, l plane. It is not difficult to see that under the conditions indicated above, i f / <  1, the equilibrium position 
ct = ~/2 is stable (shown by a plus sign in Fig. 3), while ct = -~/2 is unstable (shown by a minus sign in Fig. 3). 

If  l > 1, the equilibrium pattern and the distribution of the stability property (Fig. 3) are clearly not in accord 
with the ideas of Poincar6's theory. 

This was explained previously (see Supplement 1). On the one hand, the coordinate ct can no longer play the 
part of a generalized Lagrangian coordinate when l > 1, since it varies within bounded limits (namely, in the strip 
(-~/2) < ct < n/2)). On the other hand, the second, as it were adjacent, similarly-named extremum of the potential 
energy (for example, in the strip (~2)  < ct < ~ now belongs to the manifold $2 of the conjugate mechanism, in 
which the piston C is located to the left of the point P. 

To illustrate Supplement 2, let us assume that the uniform ~avity field is acting only on the rod PA along the Px 
axis. In that case, if I > 1, constraint (2) defines not only the mechanism shown in Fig. 1 but also the "conjugate" 
system, for which the slide C is situated "above" the point P. The distribution of equilibria is shown in Fig. 4. 

We thus see that  mechanica l  systems whose configurat ion spaces may  exper ience ca tas t rophic  change,  
as well as the critical systems associa ted with such p h e n o m e n a ,  exhibit a n u m b e r  of  curious proper t ies .  
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